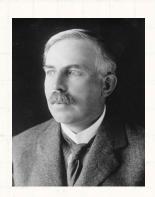



«Основы производства радиоактивных изотопов»


# **Лекция 3. Радиоактивность и закон радиоактивного распада.**

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.

#### Открытие радиоактивности



Анри Беккерель



Эрнест Резерфорд

- ✓ 1895 год Вильгельм Рентген открыл рентгеновские лучи.
- ✓ 1896 год Анри Беккерель. Исследуя флуоресценцию урановых солей, он случайно обнаружил их способность самопроизвольно излучать невидимые лучи, способные засвечивать фотопластинку. Это наблюдением естественной первым стало радиоактивности.
- ✓ 1898 год Пьер и Мария Кюри. Они выделили новые элементы – полоний (Ро) и радий (Ra), проявившие активность, превышающую активность урана в сотни раз. Мария Кюри ввела термин «радиоактивность».
- ✓ 1902-1903 годы Эрнест Резерфорд и Фредерик Содди разработали теорию радиоактивного распада и впервые установили, что активность вещества экспоненциально убывает со временем. Они также предложили закон радиоактивного распада, заложив основу статистического описания процессов в микромире.



Фредерик Содди



Вильгельм Рентген



Пьер Кюри



Мария Склодовская-Кюри



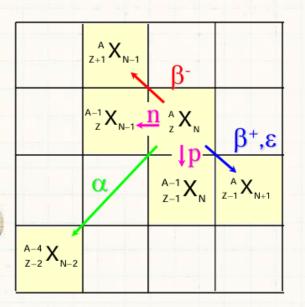




#### Радиоактивные товары начала XX века



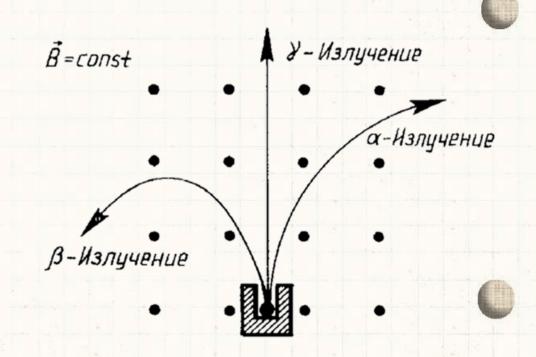








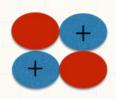




#### Радиоактивный распад



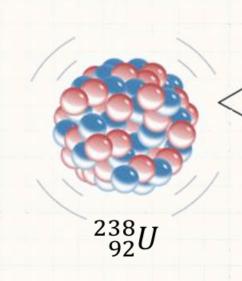
Спонтанное изменение состава и строения ядра.

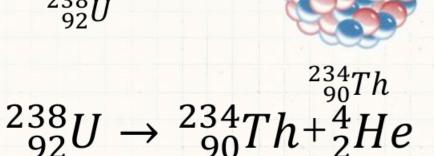
Для химика: превращение одного химического элемента в другой.


- Альфа-распад
- Бета-распад
- Гамма-распад

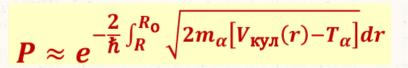


#### Альфа-распад


$$V_{\text{кул}} = \frac{Z_{\alpha}(Z_{\text{s}}-2)e^2}{r}$$


Альфачастица:




2 протона 2 нейтрона

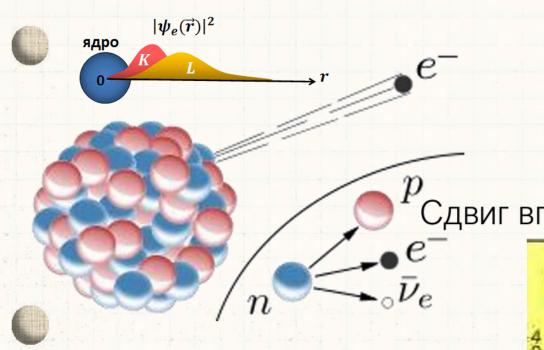
Ядро гелия  ${}^4_2He$ ,  $\alpha$ 





4*Не* 

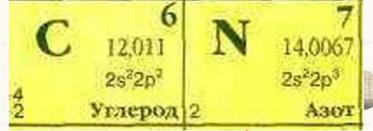





#### Бета-распад

 $M(A,Z) > M(A,Z+1) + m_e;$   $M(A,Z) > M(A,Z-1) + m_e;$  $M(A,Z) + m_e > M(A,Z-1).$ 

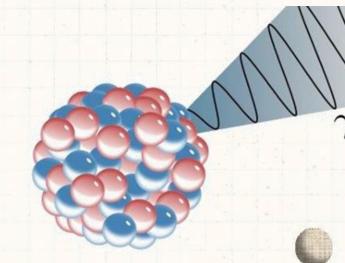
#### Не один, а три:


Бета-минус – образование электрона (β-) Бета-плюс – образование позитрона (β+) К-захват – ядро поглощает ближайший электрон

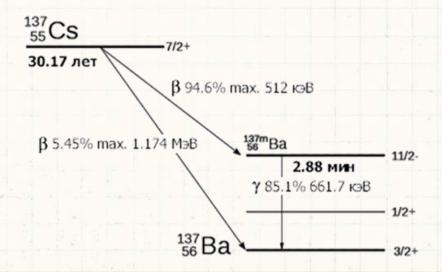


$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + e^{-} + \nu;$$

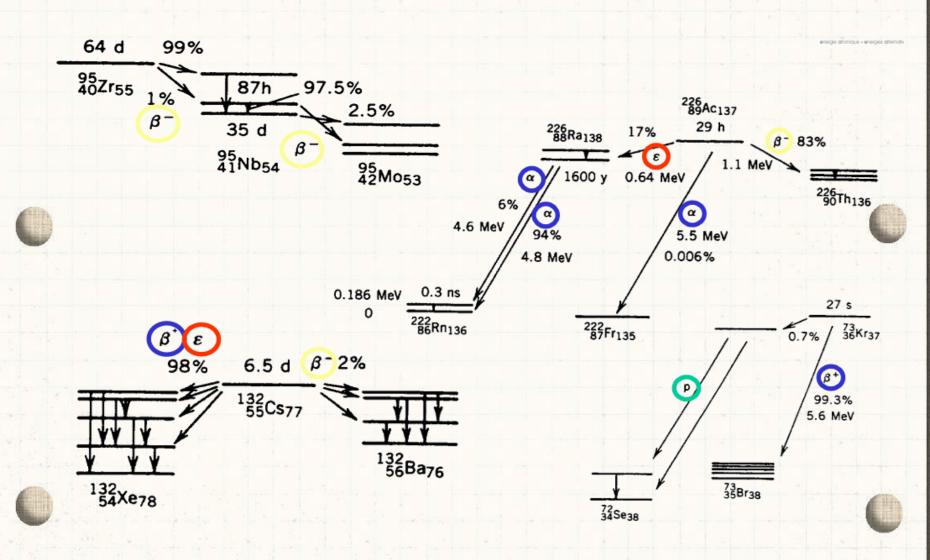
$$_{1}^{1}p\rightarrow_{0}^{1}n+e^{+}+\nu.$$


Сдвиг вправо по таблице для β-




#### Гамма-распад

Гамма-квант: Высокоэнергетический квант электромагнитного излучения


$$\frac{E(\gamma)}{E(\text{видимый свет})} = 1\ 000\ -1\ 000\ 000$$



Сопровождает альфа и бета распад!



#### Цепочка радиоактивного распада

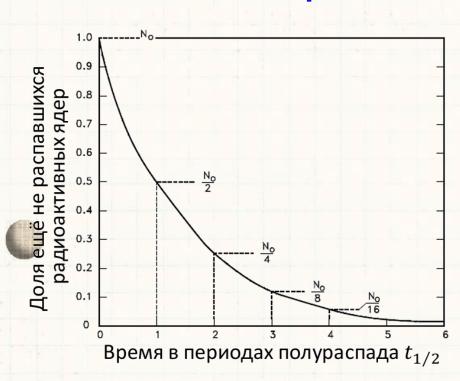


#### Закон радиоактивного распада

Пусть в момент времени t имеется N(t) одинаковых радиоактивных ядер или нестабильных частиц и вероятность распада отдельного ядра (частицы) в единицу времени равна  $\lambda$ . Тогда за промежуток dt число радиоактивных ядер (частиц) уменьшится на dN, причём

 $dN = -\lambda \cdot N(t)dt,$ 

откуда


$$N(t) = N(0)e^{-\lambda t} = N(0)e^{-\frac{t}{\tau}},$$

где N(0) — число радиоактивных ядер (частиц) в момент t=0. Наряду с  $\lambda$  используют

$$au = rac{1}{\lambda} -$$
 среднее время жизни ядра (до распада);  $t_{1/2} = rac{ln2}{\lambda} -$  период полураспада.

Среднее число  $\overline{n}$  распадов за малое время t:  $\overline{n} \approx N \lambda t$ 

#### Закон радиоактивного распада



Период полураспада  $T_{1/2}$  - время, требующееся для распада половины атомов данного радиоактивного вещества.  $T_{1/2} \approx \frac{0.693}{\lambda}$ 

Средняя продолжительность т времени жизни атомов радиоактивного вещества определяется как сумма времён существования всех атомов данного изотопа, делённая на число атомов:

$$\tau = -\frac{1}{N} \int_{0}^{t} t dN = \frac{1}{N} \int_{0}^{\infty} t \lambda N dt = \lambda \int_{0}^{\infty} t e^{-\lambda t} dt =$$

$$= -\left[\frac{\lambda t + 1}{\lambda} e^{-\lambda t}\right]_{0}^{\infty} = \frac{1}{\lambda}.$$

Скорость распада — dN/dt атомов радиоактивного вещества называют абсолютной радиоактивностью (или абсолютной активностью) А препарата. Активность источника A — число распадов в единицу времени:

$$A = -\frac{dN}{dt} = \lambda N = \lambda N_0 e^{-\lambda t}$$

$$A(t) = A_0 e^{-\lambda t}$$

$$A = -\frac{dN}{dt} = \lambda N = \lambda N_0 e^{-\lambda t}$$

### Единица измерения радиоактивности [Беккерель] = Бк = [распад/с]

По сути – это **скорость** (интенсивность) распада – количество распавшихся ядер (в штуках) в единицу времени (секунда).

Единица измерения воздействия радиации на организм (эквивалентная доза)



$$[3иверт] = 3в = [Дж/кг]$$

По сути – это энергия, переданная организму.

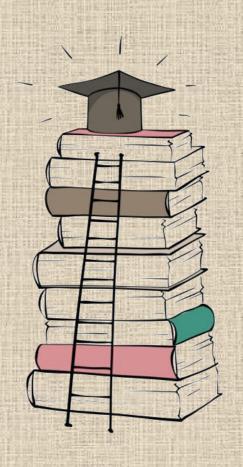
Корректно оценивать последствия воздействия радиации на человека именно в Зивертах, а не в Беккерелях.

#### Радиобиологический парадокс

В общем случае, когда имеется цепочка распадов  $1 \rightarrow 2 \rightarrow ...$ n, процесс описывается системой дифференциальных уравнений

$$dN_i/dt = -\lambda_i N_i + \lambda_{i-1} N_{i-1}.$$

Решением системы (10) для активностей с начальными условиями  $N_1(0) = N_{10}$ ;  $N_i(0) = 0$  будет


$$A_n(t) = N_{10} \sum_{i=1}^n c_i e^{-\lambda_i t}$$
,

где

$$c_{m} = \frac{\prod_{i=1}^{n} \lambda_{i}}{\prod_{i=1}^{n} (\lambda_{i} - \lambda_{m})}.$$

Штрих означает, что в произведении, которое находится в знаменателе, опускается множитель с i=m.

## СПАСИБО ЗА ВНИМАНИЕ!

